
Fast Exact Euclidean Distance (FEED) Transformation

Theo Schouten
Nijmegen Institute for

Computing and Information Science
University of Nijmegen

PO Box 9010, 6500GL Nijmegen
The Netherlands
ths@cs.kun.nl

Egon van den Broek
Nijmegen Institute for

Cognition and Information
University of Nijmegen

PO Box 9104, 6500HE Nijmegen
The Netherlands

e.vandenbroek@nici.kun.nl

Abstract

Fast Exact Euclidean Distance (FEED) transformation
is introduced, starting from the inverse of the distance trans-
formation. The prohibitive computational cost of a naive
implementation of traditional Euclidean Distance Transfor-
mation, is tackled by three operations: restriction of both
the number of object pixels and the number of background
pixels taken in consideration and pre-computation of the
Euclidean distance. Compared to the Shih and Liu 4-scan
method the FEED algorithm is often faster and is less mem-
ory consuming.

1. Introduction

A distance transformation [4] makes an image in which
the value of each pixel is its distance to the set of object
pixels O in the original image:

D(p) = min{dist(p, q), q ∈ O} (1)

Many algorithms to compute approximations of the Eu-
clidean distance transformation (EDT) were proposed.
Borgefors [1] proposed a chamfer distance transformation
using two raster scans on the image, which produces a
coarse approximation of the EDT. To get a result that is ex-
act on most points but can produce small errors on some
points, Danielsson [3] used four raster scans.

To obtain an exact EDT two step methods were pro-
posed. Cuisenaire and Macq [2] first calculated an approx-
imate EDT using ordered propagation by bucket sorting. It
produces a result similar to Danielsson’s. Then, this approx-
imation is improved by using neighborhoods of increasing
size. Shih and Liu [5] started with four scans on the image,
producing a result similar to Danielsson’s. A look-up table
is then constructed containing all possible locations where

no exact result was produced. Because during the scans the
location of the closest object pixel is stored for each image
pixel, the look-up table can be used to correct the errors. It
is claimed that the number of error locations is small.

In contrast with these approaches, we have implemented
the EDT starting directly from the definition in Equation 1.
Or rather its inverse: each object pixel feeds its distance to
all non-object pixels. This resulted in an exact but compu-
tationally less expensive algorithm for EDT: the Fast Exact
Euclidean Distance (FEED) transformation.

Next, the principle of FEED and its methods to obtain
a fast execution time are discussed. The third section de-
scribes the details of reducing the number of background
pixels that must be updated, which is the largest contribu-
tion to obtaining the fast execution. In the last two sections
results are presented and discussed.

2. Principle of FEED

In order to obtain an EDT, for each pixel q in the set
of object pixels (O) the Euclidean distance (ED) must be
calculated to each background pixel p. The naive algorithm
then becomes:

initialize D(p) = if (p ∈ O) then 0, else∞
foreach q ∈ O

foreach p /∈ O
update : D(p) = min(D(p), ED(q, p))

However, this algorithm is extremely time consuming,
but can be speeded up by:

• restricting the number of object pixels q that have to be
considered

• pre-computation of ED(q, p)

• restricting the number of background pixels p that have
to be updated for each considered object pixel q

Only the “border” pixels B of an object have to be con-
sidered. A border pixel B is defined as an object pixel with
at least one of its four 4-connected pixels in the background.
It can then be easily proved that the minimal distance from
any background pixel to an object, is the distance from that
background pixel to a border pixel B of that object.

Since the ED is translation invariant, the EDs can be pre-
computed and stored in a matrix M(x, y) = ED((x, y), 0).
ED(q, p) is then taken as ED(q − p, 0) from the matrix.
In principle the size of the matrix is twice the size of the
image in each dimension. If the property ED((x, y), 0) =
ED((|x|, |y|), 0) is used in the updating of D(p), only the
positive quadrant of M is needed. Hence, the size of the
matrix becomes equal to the image size. Its calculation
can be speeded up using the the fact that ED is symmetric:
ED((x, y), 0) = ED((y, x), 0).

If an upper limit of the maximum value of D(p) in an
image is known a priori, the size of M can be decreased to
just contain that upper limit. This would increase the speed
of the algorithm (e.g., in a situation where fixed objects are
present). The size of M can also be decreased if one is
only interested in distances up to a certain maximum. For
example, in a robot navigation problem where only small
distances give navigation limitations.

Due to the definition of D(p) the matrix M can be filled
with any non-decreasing function f of ED: f(D(p)) =
min(f(D(p)), f(ED(q, p))). For instance, the square of
ED allowing the use of an integer matrix M in the calcula-
tion. Alternately, one can truncate the ED to integer values
in M when it is stored in such format in the final D(p).

The number of background pixels that have to be up-
dated can be limited: only those that have an equal or
smaller distance to the border pixel B than to an object
pixel p (see Figure 1). The equation of the bisection line
b with the origin of the coordinate system placed at B is:
pyy + pxx = (p2

x + p2

y)/2.
Regarding the speed of the algorithm the problem is that

not too much time should be spend on searching for other
object pixels, on the administration of the bisection lines, or
on determining which pixels to update. That is because the
update operation is simply a test followed by one assign-
ment.

3. Reducing the number of pixels to update

The search for object pixels p is done on lines through
the current border pixel (B) with certain m = py/px ratio’s.
Define m = m1/m2 with m1 and m2 the minimal integers,
then the equation of the bisection becomes: 2(m1m2y +
m2

2
x) = (m2

1
+ m2

2
)px. This is of the form: may + mbx =

mcpx with ma, mb and mc integers that depend only on m.
For each quadrant for each m only the object pixel closest
to B is relevant, searching along the line can be stopped as

Figure 1. Principle of limiting the number of
background pixels to update. Only the pixels
on and to the left of the bisection line b have
to be updated. B is the border pixel under
consideration, p is an object pixel.

soon as one is found. The resulting bisection line b is then
identified with the quadrant number, with m, and with px.

To keep track of the update area, the maximum x and y
values of each quadrant are updated (see Figure 2). Only
pixels inside each square need to be updated, but not all of
them. A bisection line b in a quadrant might update these
maximum values in this and two neighboring quadrants, as
is indicated with the open arrows in Figure 2. For example:
maxy1 = min(maxy1,mcpx/ma). The intersection point
of two bisection lines in different quadrants might also give
a new maximum value, as indicated with the two closed ar-
rows in quadrant 1. The maximum values can be calculated
using integers, but it takes time.

The maximum values also determine the distance to
search along each search line. For example, for a search line
in quadrant 1 at least one of the points (maxx1,maxy1),
(0,maxy2), and (maxx4, 0) must be on or to the right of
the bisection line. This gives a maximum value for px of
max(mamaxy1 + mbmaxx1,mamaxy2,mbmaxx4)/mc.

Bisection lines closer to the origin B have a larger effect
than lines further away. Searching in circular patterns the
closest lines are found first, thus less points are checked than
using a radial search. But it requires a more time consuming
checking of reaching a maximum value than when using
radial search lines.

Since in general a number of object points from the same

Figure 2. Bookkeeping of the sizes (the
“max”) of each quadrant. Updating process:
On each scan line the bisection lines b deter-
mine the range of pixels to update.

object are close to B, the radial search is splitted. In a
small area around B all the points are checked before check-
ing a number of radial lines further out. To increase the
speed, not all points on them are checked but a certain step-
ping is used. If the remaining search area, calculated as∑

4

i=1
maxximaxyi, is small enough, searching is stopped.

The final selection of pixels to update is made in the up-
date process. For each scan line in a quadrant, the maximum
x and y values of the quadrant and the found bisection lines
in that and neighboring quadrants, determine start and end
points, as is indicated with the shaded area in Figure 2.

In addition, some further speedups are implemented, us-
ing information saved from a border point for next border
points. By searching for border pixels along horizontal scan
lines, the search for object pixels along the m = 0 line can
be combined with it. For searching in the vertical direction a
binning of the image in the vertical direction is used, which
is done combined with the initialization of D(p). Pixels ex-
actly on a bisection line, have only to be updated once. This
is done in quadrants 1 and 2, by simply decreasing mcpx by
1 for quadrants 3 and 4.

4. Results

For our FEED method test lines with m’s of 1/4, 1/3,
1/2, 2/3, 3/4, 1, 4/3, 3/2, 2, 3, and 4 and both the vertical
and horizontal lines were chosen. The intersection points of

bisection lines were only calculated for bisection lines with
the same angle. The small search area around each border
pixel was set to a square of 9 by 9 pixels and for the larger
area a stepping of 8 pixels was used. The search area limit
was set to 1000 pixels. For the bin size 1% of the image
height was choosen. All the above settings were based on
experiments using a large number of images.

Our implementation was checked using small images for
which the correct ED can easily be determined. That in-
clude the images given in reference [2] and [5] that gives
errors in ED in the first steps of those methods. Further the
results on various test images using the simple algorithm
in Section 2 without any speed optimization, were used to
check the implementation of the optimizations.

As noted by Cuisenaire and Macq [2] comparing the
complexity and computational costs of EDT algorithms is
a complex task. Currently, the 4-scan method of Shih and
Liu [5] is one of the fastest EDT methods. Therefore, we
have chosen to compare FEED with this method, except for
their look-up table correction. The execution time of the
4-scan method increases proportional to the number of pix-
els in the image. In images of a given size, the time will
depend in some complex way on the distribution of object
pixels and no equation was given for that. Similarly, it is
not possible to determine the exact computational complex-
ity of FEED. However, it should be noted that FEED uses
two scans over the image, one for initialization and one for
finding the border pixels.

We started our comparison with two test images sug-
gested by Cuisenaire and Macq [2]: a circle nearly covering
the whole image and a line under an angle of 20◦. Large im-
ages of 4096 by 4096 pixels were used to get correct time
measurements. Results of the two images and their nega-
tives on a SUN machine are given in Table 1. In the column
“reduced M”, the results are given for FEED with the size
of the matrix M set to the maximal occurring distance in the
image. All FEED results are faster up to a maximum factor
of 3 and both methods show a large variation in execution
time (see Table 1) .

Since we were developing FEED for a robot naviga-
tion problem, we generated images containing objects: “ob-
jects” and “test-obj”. Their features were designed in such
a way that errors in the implementation were likely to be-
come present. Other images generated were random blob
images. They consisted of respectively 1%, 5%, and 10%
out of border pixels. The latter is indicated by the number
behind their name (see Table 1).

With these images FEED proved, once more, to be faster.
In addition, again, both methods show a large variation in
execution time. Similar results were found for other gener-
ated blob images that are not shown in Table 1.

Shih and Liu [5] argue that the number of pixels with
a wrong ED after their 4 scans over the image is less than

image Shih & Liu FEED reduced M
circle 22.6 s 16.9 s 14.9 s
line 29.7 s 13.5 s 11.9 s
neg circle 10.7 s 5.9 s 3.4 s
neg line 5.4 s 4.6 s 2.1 s
test-obj 23.3 s 8.7 s 5.2 s
objects 24.5 s 9.6 s 5.6 s
neg test-obj 8.7 s 5.9 s 3.4 s
neg objects 9.9 s 6.7 s 4.3 s
blob01 23.7 s 10.4 s 6.4 s
blob05 20.6 s 14.1 s 10.2 s
blob10 19.1 s 18.8 s 15.4 s

Table 1. Timing results for the Shih and Liu
4-scan method, for FEED with a full matrix M
and for FEED with matrix M reduced to the a
priori known maximum distance in the image.

1%. We found for the circle image that 8.3% and for the
line image that 68.8% of the pixels were wrong. For the
other images tested, the percentage of pixels with a wrong
ED ranged from 0.1 to 3.1%. Hence, since we have not
implemented Shih and Liu’s correction of wrong EDs, the
speed advantage of FEED is even larger than indicated in
the table.

Last, we considered images on which FEED would not
perform well: random dot images. In such images, for each
pixel it is decided randomly, independent from the other
pixels, whether the pixel becomes white or black. For 10%
object pixels FEED is still a factor 1.5 faster. When the per-
centage is increased the 4-scan method becomes faster than
FEED. The speed difference is the highest at 80% object
pixels where FEED is a factor of 6 slower. These results are
partly explained by the fact that the effect of reducing the
size of M , for those images, is small.

Note that the methods to obtain a fast execution were
specially adapted to object like images. So far we did not
consider methods to speed up the execution of random dot
like images. Thus, the current FEED implementation is re-
garding execution time suited for object like images, but not
for random dot like images.

Regarding space requirements, both FEED and the 4-
scan algorithm use an integer matrix of a size equal to the
image size to store the EDs. The 4-scan method uses two
of such matrices to store the source mapping additionally.
Hence, FEED uses much less space than the 4-scan method.

All images used for testing FEED can be found on
http://www.cs.kun.nl/∼ths/feed

5. Discussion

We have developed a Fast Exact Euclidean Distance
(FEED) transformation, starting from the inverse of the dis-
tance transformation: each object pixel feeds its distance to
all background pixels. The prohibitive computational cost
of this naive implementation of traditional ED transforma-
tions, is tackled by three operations: restriction of both the
number of object pixels and the number of background pix-
els taken into consideration as well as the pre-computation
of the ED.

We tested FEED on many images and compared the re-
sults with the results from the Shih and Liu 4-scan method.
For images containing objects FEED is faster up to a maxi-
mum factor of 3 and even 4 if the maximum occurring dis-
tance is provided as input to FEED. These kind of images
occur, for example, in applications like robot navigation.
For images containing random pixels FEED can be slower
than the 4-scan method. These kind of images can, for in-
stance, occur in classification applications.

FEED is less memory consuming than the 4-scan
method. For an input image of n pixels, FEED uses n inte-
gers to store the EDs. In contrast, the 4-scan method uses
3n integers to store the EDs and additional information, for
later correction of wrong EDs.

Further research will focus on boosting FEED, espe-
cially for random dot images. We will further look into us-
ing FEED for video sequences. In the case that fixed objects
are present, their influence on the D(p) matrix can be pre-
calculated and the changing objects in each image can then
be added to the D(p) of that image. Last, note that FEED is
essentially parallel so that parallel implementations can be
developed if the need arises.

So, with FEED no approximations of ED transforma-
tions are needed due to its computational burden, but both
Fast and Exact ED transformations can be done on images
containing objects. With that a new image processing algo-
rithm is launched important for many applications in image
analysis.

References

[1] G. Borgefors. Distance transformations in digital images.
Computer Vision, Graphics and Image Processing, 34:344–
371, 1986.

[2] O. Cuisenaire and B. Macq. Fast euclidean transformation by
propagation using multiple neighborhoods. Computer Vision
and Image Understanding, 76:163–172, 1999.

[3] P. Danielsson. Euclidean distance mapping. Computer
Graphics and Image Processing, 14:227–248, 1980.

[4] A. Rosenfeld and J. Pfaltz. Distance functions on digital pic-
tures. Pattern Recognition, 1:33–61, 1968.

[5] F. Y. Shih and J. J. Liu. Size-invariant four-scan euclidean
distance transformation. Pattern Recognition, 31:1761–1766,
1998.

