Formal model of the Bluetooth Inquiry Protocol

Hugo Brakman Vincent Driessen Joseph Kavuma Laura Nij Bijvank
Sander Vermolen

April 2006

1 Introduction

Bluetooth is a widely used communication protocol these days. It is used in the communication between
phones, computers, headsets and many more devices. In the year 1994 the Ericsson company decided
it wanted a protocol that could be used to connect mobile phones to other devices. Jaap Haartsen,
working for Ericsson, developed the protocol. The techniques were further developed by the Bluetooth
Special Interest Group.

One of the things described in the protocol is the way two devices that are neither connected nor
synchronized can try to find each other. This is called the Inquiry Response Phase, the first phase
in the protocol, and should provide a way for the devices to synchronize in order to allow further
communication.

We have looked closer at the specification of this phase as described in [1] and created an UPPAAL
model to formally verify that after the Inquiry Response Phase indeed the devices will be synchronized.

In this paper, we will first give an informal explanation of the Inquiry Phase, the Inquiry Scan Phase
and the Inquiry Response Phase. We will then look closer to how we modeled these phases in detail.
We will then look at some of the problems we ran into and the decisions we have made to solve these.
In the final part of the paper we will state our conclusions and make some suggestions for possible
further research.

2 Informal description

When two Bluetooth devices want to start communicating they do that using the Inquiry Phases. In
this phase one of the devices is assumed to be in master mode querying for other devices. The other
device is assumed to be in slave mode. The master keeps sending packages and listening for responses.
The slave will listen for a package from the master and respond to the master by sending a return
package.

The devices do, however, change frequency during every phase. The frequencies used in Bluetooth are
very common frequencies used in wireless phones, remote controls, garage doors and more. Therefore
the devices change (“hop") their frequencies a lot. Probably the devices will not use the same frequency
the first time and the communication attempt will fail. However, the hopping should be done in a way
that at a certain point in time the devices will use the same frequency in the same time interval and
further synchronization can be achieved using that.

There are quite a few tricks involved in order to get this to work properly. There is the hopping of
frequencies, timing issues in sending, receiving and listening and some more.

We want to verify that indeed the devices will eventually synchronize in all cases if we follow the
specification.

3 Detailed description

In this section, we will give a top-down overview of the formal model of the Bluetooth Inquiry Phases.
The official specification introduces the terms slave and master to mean the following:

“Although master and slave roles are not defined prior to a connection, the term master
is used for the inquiring device and slave is used for the inquiry scanning device.”

This is exactly the definition that we will use in this document. Informally, inquiring can be seen as
the process of trying to find a Bluetooth device in the direct neighborhood. Similarly, inquiry scanning
is the process of a Bluetooth device scanning the environment for inquiring devices that are trying
to communicate. This is the integral process of the Bluetooth inquiry sub state—there will be no
communication apart from “finding each other”. After there has been a successful handshake, the
devices advance to the next sub state of the Bluetooth protocol, in which we are not interested within
this research.

In order to come up with a formal description of what is going on, we tried to follow the prescriptive
Bluetooth Standard Specification [1] as close as possible. In doing this, we've initially made a simplistic
model in which we abstracted from all tricky details and made unrealistic assumptions, in order to
avoid complexity. Examples of this are discussed in Chapter 4. After that, we have gradually removed
assumptions and tried to model the thereby newly introduced complex constructs into the existing
model, bit by bit, persistently assuring ourselves that the key properties of the system would still hold.

In the following sections, we will start with a top-down overview, after which we will incrementally
strike down alongside the building blocks that together form the model.

3.1 Bluetooth clocks

One of the key objects within each Bluetooth device is the (internal) Bluetooth clock, also called the
native clock. Bluetooth devices have to synchronize with each other, using time slots with a duration
of 312.5 pus. Virtually all the timing of the Bluetooth communication is defined in terms of these time
slots, which indicates the smallest common time unit.

Of course, an exact value of 312.5 us is not feasible in real time systems. Since the clocks will consist
of hardware clocks at the lowest level, there will always be the problem of clock drift and jitter, which
should be taken into account.

Per device, there is a native clock counter, which is an array of 28 bits, posing a total number of
228 — 268,435,456 possible clock values. Since the clock increments each 312.5 us, a full clock cycle
will take almost a day (= 83886.08 seconds).

Using UPPAAL, we represented the ticking of a Bluetooth clock like the way it is displayed in Figure 1.
The template consists of only one state, in which UPPAAL waits until the clock should be incremented.
Upon taking the transition, UPPAAL resets an internal clock (representing the hardware clock), time
and executes the tickClock() function, which takes care of increasing the array of 28 bits. The
relevant source code for this template is shown in Figure 2.

As can be seen, the array of CLOCK_LENGTH (a constant set to 28) bits is passed along with the
instantiation of this template. It is this array of booleans that is incremented each step, by the given
algorithm.

Drift and jitter are implemented by letting UPPAAL wait a non-deterministic amount of time. This is
done using the typical UPPAAL construct for this: by introducing a state invariant time <= CLK_MAX
and a transition guard time >= CLK_MIN. We took a clock period of 625 us (which is 2¥312.5 us,
because UPPAAL can’t handle real numbers, only integers), and a jitter of 6 and drift of 1. All
of this implies that the Bluetooth clock is incremented each 623 to 629 UPPAAL time units (non-
deterministically).

time=>=CLK_MIM

time<=CLK_
Figure 1. The Bluetooth Clock modeled in UPPAAL

3.2 Communication

Communication of messages must takes place at the start of a time slot and at no other time. Since
two Bluetooth devices initially have no notion of each other, they have not yet synchronized their
clocks with each other?.

In fact, this is not a part of the inquiry phase, but is done in a later stadium.

//

// in the model, as we will discuss at a later point in time, the variables
// for the internal clock (CLKN) as well as the UPPAAL clock (time) are

// parameters of BluetoothClock

//

// Parameter definition:

// int [0,1] &CLKN[CLOCK_LENGTH], clock &time;

// Relevant global constants (from the global declarations file)

const int CLOCK_LENGTH = 28; // Length of clock in bits

const int CLOCK_PERIOD = 625; // Clock period times 2, because Bluetooth

//

Because some of the internal variables of this clock are needed elsewherg

// only supports discrete values

Local (BluetoothClock) constants

const int HALF_JITTER = 3;

const int DRIFT = 1;

const int CLK_MIN = DRIFT + CLOCK_PERIOD - HALF_JITTER;
const int CLK_MAX = DRIFT + CLOCK_PERIOD + HALF_JITTER;

void tickClock ()

{

}

increment (CLKN);

void increment (int[0,1] &inputClock [CLOCK_LENGTH])

{

for (i : int[0, CLOCK_LENGTH-1])

{
if (inputClock[il)
inputClock[i]:=0;
else
{ inputClock[i]:=1;
return;
}
}

)

Figure 2: Source code listing for the BluetoothClock template

ilsHA4l[(D)ba14asuodsay

paysILy

AlgHANLbaldasuodsay Ainbupeallayia

IVVddn Ul psjepow se a1ejdwa) 921A9([|Ny By € 24nSi4

QOI43d ™A 070 T == 20120y

4 ail[0baiuess/
Q0INId HD 0T =>wooomy ¢[ANI0P=IAUES

AV ALNIYLIEIONN -dold3d AD 01D == 3wy

AYI3d ALNIYLEIDNN - d0IH3d AD07D uv,n

0 =330 amy .
pusgo Guge spbuuuelgauog ueds
[HUEI] !
fhbujaealiaya
Anbujogj
PAE] (oibat Jasundsaynbujaealays
jaan
P X 0==l1 N30
Qo Bngagalepdn - QoEngagalepdn [la}
‘bardfanbuiaes = Aauanbaly ‘OhasJinnbuiaes = Auanbaly)
Qo Bngagalepdn Do Bngagalepdn
‘Obaadianbupaes = fauanhal) ‘Obal4innbulaes = fauanhal) BN
ilaNl0ba14 dinbujaesliaya ila0bar4fnbuae aiayls M-

L0 XL

b==[0lN>n2 00X L 0==l0IN:N

HELS00 XL

0==[0rAT2 99 0==[0IN>T2 .

(xe s 2002i

@wr——0O

Helgo L Bulem

Figure 3 displays the model of a Bluetooth device, which actually holds the model for both a master
and a slave device, since most Bluetooth devices can be used as both a master and a slave. However,
the choice for a device to become either one of them is a choice that implies a different behavior. The
DoInquiry parameter to the template constructor actually determines for the instance of the device
whether it will become a master or a slave. In our model, we have validated some properties of the
system, using a simple communication model consisting of one master and one slave, each instantiated
with a different value for DoInquiry.

Usually Bluetooth devices “contain” an internal BluetoothClock. Since UPPAAL does not fully sup-
port object oriented constructs like this, we have modeled this by defining two global native clocks
(int[0,1] CLKNs[NR_OF_DEVS]) and passing corresponding references to these clocks to both a
Device instance and a BluetoothClock instance.

The initial WaitingToStart state holds an invariant stating that the clock has not yet reached a certain
maximal value. This technically introduces a maximal waiting time for the system to start, without
having to introduce a new UPPAAL clock, which is effective avoidance of a state-space explosion. The
waiting time itself avoids that the clocks have equal values along the way for a long time by waiting a
random (maximal) amount of time.

In the next section, we will take a more detailed look at the implementation of the master and slave
parts of the model.

3.3 The slave

To start with the simplest case, the slave life time goes through three states sequentially. First, the
slave is ready to start a connection and starts listening in the environment for a master that is searching
for it. After it receives a message from a willing master device, it will immediately go into a waiting
state in which it has to wait for the second next clock tick to arrive, before it may send back a message
to the master. This is a requirement because the master uses a send-send-listen-listen activity pattern,
making the time space between a send action and the corresponding listen action exactly two Bluetooth
clock ticks.

After this mandatory waiting time, the response packet is sent back to the master. Then, the inquiry
phase is over and the slave’s part is done here. This process is depicted in Figure 4.

ether[calclnquResponseFreq(0)][FHS]!
incpementhl()

Skan DaneScanningWWaitingTaSend
oY
N

hwelock <= 2FCLOCK_|

hwelack
ether[calclnquiryScanFreq())I0]7

Figure 4. The device part relevant for slave devices

Of course, things are a bit more complicated then described here. Communication involves the sending
of packets at certain defined moments in time and at certain broadcast frequencies.

Because a device can only listen or send at only one frequency at a time, and to avoid collisions of all
Bluetooth devices (and others) in the same area using the same frequency, the Bluetooth specification
defines a hopping sequence of frequencies, which follows a pseudo-random hopping pattern. The master
follows a faster hopping sequence than the slave to broaden the changes to successfully find a slave
device.

Urgent ether transactions

Furthermore, ether is defined to be a two-dimensional, urgent, broadcast channel. It is urgent to make
sure that the transitions are taken as soon as they are possible. It is a broadcast channel to match
reality (if a signal is broadcasted and nobody picks up the signal, the system should not deadlock).
Finally, the two-dimensions of the channel definition are a construct to match frequency relevance on
which the packet is broadcasted (signals broadcasted on frequency X should not be picked up by a
device listening on frequency Y, if X is unequal to Y) and the type of the packet. For the inquiry
phase of the Bluetooth protocol, the type of packet can either be an ID or an FHS-packet. For both
packets, concerning our model, the contents of the packets is irrelevant within the inquiry phase?. In
the inquiry sub state, the master sends out the first packet, which is an ID-packet, while the slave
responds with an FHS-packet. We've abstracted away from their contents and replaced the packet
types by constants.

3.4 The master

The master part is the most complex part of the device. The master is involved in complex timing of
packet sending and listening. As described above, the task of the master can be described as sending
an |ID-packet over frequency X and Y rapidly, then immediately starting to listen if someone replies at
frequency X and, if not, do the same for frequency Y. If it didn't get a response, it tries again on the
next two frequencies. The frequencies are defined by the hopping sequence and change rapidly, trying
a different frequency each time.

Although a slot in the inquiry phase is defined to be of a length twice as long as the clock tick period
(so the slot length is 625 us), the master performs two actions per slot. When the master sends
messages, it is called a TX-slot (transmission), otherwise, it is a RX-slot (reception).

Figure 5 shows the part of the device model that is relevant for a master device. The first thing
that is forced by the way the model is built, is that the master will wait until it starts the inquiry
procedure until the least significant two bits of its native clock are zero. This is expressed by the guard
CLKN[0]==0 && CLKN[1]==0 on the urgent transition3. In a worst case scenario, this may take at
most 3 clock ticks. The reason for this, is the need to make a choice when to initiate a TX-slot (at
least, without having to record the clock value, which would be a lot of administration).

_ TX0Ostart

CLKN[O1==0 && C == CLKN[]==0 TX00 A KNTT== TX01
@ CLIHIN==0 868 CLKNITE=0 SLKNIOI=D PN LN Jrﬁé-:: CLOCK_PERIOD - UNCERTAINTY_DELAY
urgl 2 ether[calcinquirgFreq()]ID] = etherfcalcl nquiryFreq()]ID]!
hwe >= CLOCK_PERIOD - UNCERTAINTY_DELAY
] L RX1
CLKN[11==0) ci=1 @
urg! urg! hS
stherfealcinguiryRe sponss Freq (OTRR(517 ether[caldnguiryRespanseFreq(1)][FHE]?

ished

Figure 5: The device part relevant for master devices

After this urgent transaction, the first ID-packet is sent out urgently (see the discussion of the urgent
ether channel in the previous section). These two transactions are always executed right at the same
moment, because, once the least significant clock bit is 0, both guard on urgent transitions hold. Note

2The contents of the FHS-packet is used in the next phase to page the other device.
3The urg! synchronization channel is an urgent broadcast channel, introduced as a dummy for expressing that the
transaction is urgent, nothing more. It has no side effects other that this.

the function call to calcInquiryFreq() here. This function calculates the hopping sequence, which
results in a frequency, depending on the current value of CLKN, the native Bluetooth clock. Hopping
sequences are detailed in Section 3.5.

Please note that, in contrast to what the specification implies, we have modeled the sending and
receiving of packets to be instantaneously, i.e. sending does not take time and the packet is immediately
done.

Next, we wait in the state TX00 (this naming convention should make clear that we are in a TX-slot,
and the native clock’s least significant bits are both zero). Then, again, immediately when the clock is
incremented (i.e. when CLKN[0] == 1) we should send out another ID-packet. Because the hopping
sequence calculation is executed again, and CLKN's value has changed, the frequency will be different
here.

Once we are in the TX01 state we have to wait for the time slot to be finished in order to be allowed
to act again. The master is now supposed to start listening for a response of a potential slave, on a
corresponding frequency. However, since the clocks of both the slave and the master are subject to
drift and jitter, we should start listening somewhat before the sending probably will take place.

Therefore, the Bluetooth specification introduces a so called uncertainty delay, which is a small amount
of time before the clock tick arrives. The tricky aspects of this seemingly small exception are greater
than one might expect at first glance. Not only because of the fact that we should manually use the
hardware clock to time this event—which, from a conceptual point of view should not be necessary,
ideally, because the Bluetooth clock is an abstraction made so we wouldn't have to use the hardware
clock in the first place. Besides this being an ugly hack in our opinion, it has consequences for the
way the listening frequency must be calculated, because this calculation depends on the current CLKN
value. However, what we want is to use the CLKN value for the next time slot (only in this particular
situation). This requires a hack from our side, which we solved by adding a boolean parameter to the
calcInquiryResponseFreq() function call, stating whether we should increment the CLKN counter
beforehand, or use it as it is.*.

The rest of the master part is kind of straight forward. Nothing special happens in the remaining states
or transitions. Once the TXO01 state is left, we arrive at a nameless state, from which immediately is
listened for a potential slave response. If that response is captured, we are finished. If not, we go to
another state (RX1_, which represents the whole RX-slot where the least significant bits of CLKN are
both 10 and 11) in which is listened for a response (on two frequencies, since the CLKN value changes
during this state).

3.5 Hopping sequence calculation

Calculating the Bluetooth hopping frequencies mainly consists of calculating one large function. This
function (the basic hop selection kernel) is described in a high level of detail in the Bluetooth specifi-
cation. To represent this function in our model, we have implemented a series of UPPAAL functions
that exactly executes the individual parts of the selection kernel. There are no differences between the
calculation of the hopping sequences by our model and the calculation by the specification. Even the
naming used in our model is nearly the same as the one used in the specification. So there is no need
to focus on the details of the UPPAAL calculation here. Those can be found in the specification, or in
the comments between the code of our model.

4 Assumptions

We have made some assumptions in our model. Some were already stated earlier. In this section we
will list and discuss the assumptions made.

4The code is not getting any more elegant due to this.

e In figure 2.10 on page 81 of the specification: The master-to-slave slots always occur at CLKN[1]
= 0. It is not stated that it should be this case, but it makes the model much more clear this
way and it doesn't cause further problems because of the way the rest of out model works.
The difference between the clocks of the devices might still be one, two, three etc. up to the
maximum introduced.

e In our model, the slave sends a response-FHS-package and then assumes the package arrived at
the master and is finished with this phase. Actually the FHS-package can be lost or disturbed.
The Inquiry Scan Physical Channel specification doesn’t say what to do in this case. Probably,
the listening cycle has to start over for the slave, but the exact drill is unclear so far.

4.1 Hopping sequence calculation

As we stated in the previous chapter, the specification gives a detailed and almost complete description
of the hopping sequence calculation. There is however one part where the specification is not entirely
clear and seems to contradict itself. At page 88 section 2.6.2.4 the second addition of the selection
kernel is explained. The specification says:

The addition operation only adds a constant to the output of the permutation operation.

When we look at Figure 2.16 on page 86 of the specification, we can seen that the second addition
has Y5 as one of its inputs. This seems to be a contradiction, since Y5 depends on the clock (Table
2.2 page 91) and is therefore variable instead of constant.

To solve this issue, we have ignored the above quote of the specification and have used the following
calculation for the second addition:

(InputStream + Y5 + E + F') mod 79
In which the input stream is the 5-bit result from the permutation operation.

Furthermore, Table 2.2 on page 91 states that for the inquiry phase D = Ajg_1¢, we assumed this to
mean Dg = Alg and DO = AIO-

There was one more issue we had to resolve while constructing the model. This has to do with the
A-train and B-train switches. The trains themselves are described in much detail on page 92, 93 and
94. However when to switch between the trains cannot be found in this part of the specification. Some
searching through the other parts resulted in (page 331 of volume 3):

A single train shall be repeated for at least Ninquir, = 256 times before a new train is used.

When we assume that a train will start when CLKN[3-0]=0, then only CLKN[3-0] will change while
processing a train, since a train only consists of 16 different frequencies. We have defined our Xi
calculation in such a way that our assumption is correct. We can now switch between the trains on
the switch of CLKN[12], since at that point in time the train will have been used exactly 256 times.
We could of course increase this number as the specification states, but this would cost more time
in simulation and verification. Since the specification states (on the same page as the quote) that at
least three switches between the trains must have taken place to be sure a connection has been made,
there is no reason to assume the value of Niyquiry is very large, because this would only increase the
connection time.

5 Conceptual problems and Design decisions

We started with separate master and slave models (templates). But because the hopping-sequence-
calculation should be in both, and it is more natural because a device isn't only a master or only a
slave initially, we decided to make a one device model (template).

We only verified the model with 2 devices, one being master and the other slave. For the checking if
the devices will synchronize on the hopping sequences we don't need more devices. We didn’t check if
there can be interference between more devices in the inquiry phase.

We had at some point a problem when the clock of the master and the slave would remain ticking
exactly at the same time. In practice this will never occur, but in our model it was a possibility. When
the slave receives the ID packet from the master at the first sending-try of the master in a slot, it
waits for 625 us. Then UPPAAL has to choose which of the two clocks to tick first. When it chooses
the master-clock, everything goes alright. However when it chooses the slave-clock, the slave starts
sending the response-FHS package before the master starts listening. The master in this way just
misses the (beginning of) the FHS package. This problem is solved by implementing the uncertainty
window which we had to do anyway.

5.1 Clock decisions

We used a Bluetooth-clock of only 17 bits instead of 28. Because for the hopping sequence calculation
(and in our model) you only need bits 0 to 16, and this way the verification is much faster.

For the initial state the devices can only wait for the first 8 bits to be raised to 1 then it has to leave
the initial state. The waiting is done for the two clocks (the master-clock and slave-clock) to differ.
Actually we wanted it to be possible to let them differ for all the clock-bits. But this took too long to
verify and we did not wait for the results.

5.2 Hopping sequence calculation

To represent the different global variables of a Bluetooth device, we had two possibilities. The first was
to use integers and the second was to use bit-arrays. The advantage of numbers is that they might be
processed a lot faster by UPPAAL. However, we are not entirely sure of this, because the actual state
space remains the same as with bit arrays. So because of the fact that using bit arrays is easier to code
and comprehend and much more intuitive to read, we decided to use the arrays. This has resulted in
a model that looks a lot like the specification and has just one array-to-integer conversion function.

The specification of the inquiry and inquiry scan sub state does not explicitly state the bit length of
the internal device variable N. So we have just assumed this to be 5 (the same as the length of the
bit stream of the selection kernel). This might be incorrect, but that does not pose any threats to the
correctness of the model. The reason is, that in any execution of the model, N can only be incremented
by at most one. So N will alway be zero or one. Although this has not been a problem for us, if the
model would be extended to a situation in which more than two packages will be transmitted, the
length of N might become an issue.

6 UPPAAL problems

6.1 Documentation in a node

When we add some documentation in state DoneScanningWaitingToSend, UPPAAL gives some
syntax errors: “Missing initial state” and “Missing system tag” We don't know why this is and it is
only a problem in this state. It seems to be a bug in UPPAAL.

6.2 Urgent broadcast channels

At some point we wanted to leave a state as soon as a guard would hold. We first tried to make the
state urgent, but this didn't work because it wanted to leave the state as soon as possible without
waiting for the guard to hold, causing a deadlock. (Obviously, this could be expected since time is not
allowed to proceed in an urgent state.) So we changed the state back to not urgent and introduced

10

an urgent broadcast channel. Now, it takes the transition as soon as the guard holds and doesn’t have
to synchronize because of the broadcast.

6.3 “Maybe satisfied”

In the UPPAAL language one can define boundaries to integers. This is quite useful in verifying
the correctness of your code and most likely it is useful to prevent a state explosion. We had also
implemented these boundaries and used them on a variable that stored the result of a modulo operation.
We had expected this result to be positive, but in UPPAAL the modulo function appeared to be able
to return negative values. Not aware of this flaw, we tried the code in the verifier. After some
calculation, to our astonishment, UPPAAL resulted in the message: "Property maybe satisfied”. Since
the boundary error only rarely occurred, the simulator did not help much. So after some exhaustive
searching we eventually found the flaw and were able to verify our properties correctly.

6.4 Clock guard on urgent transactions

As already mentioned in the detailed discussion on the slave implementation, UPPAAL does not allow
for expressing guards on urgent transactions if the guard is a predicate over a UPPAAL clock. As
we have tried to model the slave transaction from the DoneScanningWaitingToSend state to the
state where the response is sent as an urgent transaction, UPPAAL complains about not being able to
compile. This is depicted in Figure 6.

s canningWaitingToS end

@ ()
gy urg! N
== 2*CLC
£
Pasition Descripkion
Device/DonescanningaitingToSend- =/ synchronisation |CI|:u:k guards are naot allowed on urgent edges

Figure 6: Errors in the UPPAAL model when adding clock guards to urgent transactions

To avoid this error message, we manually recoded the model to contain an invariant (hwclock <=
2+%CLOCK_PERIOD) that should hold until the guard can finally be taken and does not hold after the
guard does not hold anymore. Of course, this is not the preferred way of doing things.

6.5 Hopping sequence calculation

When having understood the selection kernel, implementing it in UPPAAL is not as easy as this might
seem. UPPAAL has a very limited language syntactically as well as semantically. For functions that
consist of just a few lines of code, the language is sufficient, but for a function such as the selection
kernel, this requires some creativity and will certainly result in code that is not as beautiful as one
would like it to be. | will not discuss all detailed restrictions of UPPAAL here. Those can be found in
the manual. However, | will name the most problematic one:

11

UPPAAL can not handle variable sized arrays as parameter to its functions. In the selection kernel
there are a lot of operations that are executed more than once with different bit stream sizes. For
example the various addition operators. One would like to specify some kind of binary adder, and use
this throughout the code. But this is impossible due to the restrictions of UPPAAL. We have solved
this issue, by specifying a different function for every box of the selection kernel and copying some of
the code. This results in code that is still usable and intuitive, but it certainly is not code that is easily
maintainable.

7 Conclusions and Further research

We created a model of which we think it is sufficiently close to reality to be used in the verification of
some properties of the Inquiry Response Phase.

In total, we have tried to prove two properties of the system, representing system liveness and safety.
These are:

e AO Master.Finished A Slave.Finished
This property actually expresses that the system always eventually will reach the “finished” state
for both devices, i.e. it expresses that there will always be communication. Actually, this property
is the desired property the developers of Bluetooth would want to satisfy under all conditions.
We have validated this important property for a whole variety of initial clock values. Besides
that, we have been able to verify these properties, too, for both ideal Bluetooth clocks as well
as clocks that were subject to drift and jitter.

Also, the simplification of bringing down the CLKN array down to only 17-bits of length, as
mentioned in Section 5.1, did not have effect on the validity of this property, as we expected
beforehand. This makes us think the simplification is a harmless one. Verification was significantly
faster after this simplification, which in turn accounted to make complex improvements easier to
verify.

e AD not deadlock
This property actually expresses a system invariant, stating that the system as a whole will
never deadlock. This property is very important in getting a confidence that the specification is
correctly modeled.

Modeling the Inquiry Response Phase in UPPAAL worked pretty well. It gave us good insight in the
phase and some questions surfaced that we could not answer easily. We even found a strange remark
in the specification that to our opinion is incorrect as discussed in section 4.1.

Although it is arguable whether the specification is well written, at least we could, with some effort,
all agree on what we think the specification specifies.

We implemented a jitter of at most & and a drift of at most 6%5 of the “real” time and some arbitrary

initial clock difference of the first 8 bits of the Bluetooth clock. For this situation we could verify that
always eventually the master device will receive a return packet from the slave. This means in practice
that synchronization is accomplished. Probably we could verify more than this but it takes quite some
time so that is left for the next group.

One of the things we did not look closer at of the Inquiry Response Phase but that might still be
interesting is the duration of a transmission. Currently we assume that a transmission, if the receiver
listens in time, will arrive completely and without errors or not arrive at all. Time does not elapse while
sending or receiving. In reality this is not the case and it might be something to look closer at.

Something else we did not look at but probably will be relatively easy to do using the model is verify
properties for more than two instances (master, slave, slave for example).

12

Our research focused on the Inquiry Response Phase, leaving out other phases. Obviously these could
be interesting.

References

[1] Baseband Specification. In Bluetooth—Core Specification v2.0 + EDR, pages 55-210. 2004. URL

http://bluetooth.com/NR/rdonlyres/1F6469BA-6AE7-42B6-B5A1-65148B9DB238/840/
Core_v210_EDR.zip.

13

http://bluetooth.com/NR/rdonlyres/1F6469BA-6AE7-42B6-B5A1-65148B9DB238/840/Core_v210_EDR.zip
http://bluetooth.com/NR/rdonlyres/1F6469BA-6AE7-42B6-B5A1-65148B9DB238/840/Core_v210_EDR.zip

	1 Introduction
	2 Informal description
	3 Detailed description
	3.1 Bluetooth clocks
	3.2 Communication
	3.3 The slave
	3.4 The master
	3.5 Hopping sequence calculation

	4 Assumptions
	4.1 Hopping sequence calculation

	5 Conceptual problems and Design decisions
	5.1 Clock decisions
	5.2 Hopping sequence calculation

	6 UPPAAL problems
	6.1 Documentation in a node
	6.2 Urgent broadcast channels
	6.3 ``Maybe satisfied''
	6.4 Clock guard on urgent transactions
	6.5 Hopping sequence calculation

	7 Conclusions and Further research

