Supporting Formal Method Teaching with Real-Life Protocols
Outline

• Solution outline
• Bluetooth example
 – Informal description
 – UPPAAL model
• Results using this solution
• Required knowledge and skills
• Variations (within solution outline)
Solution outline

Real-Life protocol

- Well known
- Protocol specification available

Abstract model

- UPPAAL
- PRISM

Verification

- Correctness
- Timing issues
Bluetooth project

Real-Life protocol
 Bluetooth

Abstract model
 UPPAAL

Verification
 Devices will eventually communicate
 (No deadlock)

Analysis of Embedded Systems

Prof. dr. Frits W. Vaandrager
Informal description

Inquiry phase
Master-Slave relation
Hopping

[Diagram showing Master and Slave relations in three different configurations labeled a, b, and c.]
Communication scheme

TT / RR Communication
Hop on each slot
Clocks not synchronized
Jitter and Drift
UPPAAL Model – Top level

MasterBT Clock := BluetoothClock(CLKNs[MASTER], hwclocks[MASTER]);
SlaveBT Clock := BluetoothClock(CLKNs[SLAVE], hwclocks[SLAVE]);
Master := Device(MASTER, CLKNs[MASTER], hwclocks[MASTER]);
Slave := Device(SLAVE, CLKNs[SLAVE], hwclocks[SLAVE]);

system Master, Slave, MasterBT Clock, SlaveBT Clock;
UPPAAL Model - Device
UPPAAL Model – Device – Slave
UPPAAL Model – Device – Slave

UPPAAL Clock
UPPAAL Model – Device – Master
UPPAAL Model - Code

- Hopping sequence calculation
- Clock counter
- Constant Declarations
Project results

• For all possible traces:
 – All devices will eventually be finished
 – Deadlock will never occur

• Unclear details of Bluetooth protocol document

• Including clock jitter and drift
 – Jitter of 6/625
 – Drift of 1/625

• Reduced clock counter
• Transmissions are instantaneous
UPPAAL

Pro's
• Intuitive and user-friendly interface
• Drawing automata increases the overview
• Very good feedback through a graphical simulator
UPPAAL

Cons

• Not object oriented
• Limited programming capabilities
• Poor verification errors
• Some small bugs
Practical issues

- Group size
- Duration
Results

- Realistic
 - Improves motivation
 - Recognise the values of the teaching
- Graphical visualisation/simulation
- Group work helps weaker students
- Actual results motivate the student
Required knowledge and skills

• Mathematical background
• Understanding of tools and theories
• Team work
Variations within the solution outline

Variations within Bluetooth protocol
• Duration of transmission
• More network nodes or merging networks
• Other phases
• Extending the model

Different protocols

Different approaches (tools)
• Probabilistic